3.532 \(\int \frac{x^2 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^{3/2}} \, dx\)

Optimal. Leaf size=333 \[ -\frac{\left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (\sqrt{b} c-\sqrt{a} e\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 a^{3/4} b^{5/4} \sqrt{a+b x^4}}+\frac{c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 a^{3/4} b^{3/4} \sqrt{a+b x^4}}+\frac{f \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{2 b^{3/2}}-\frac{x \left (a e+a f x-b c x^2-b d x^3\right )}{2 a b \sqrt{a+b x^4}}-\frac{c x \sqrt{a+b x^4}}{2 a \sqrt{b} \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{d \sqrt{a+b x^4}}{2 a b} \]

[Out]

-(x*(a*e + a*f*x - b*c*x^2 - b*d*x^3))/(2*a*b*Sqrt[a + b*x^4]) - (d*Sqrt[a + b*x
^4])/(2*a*b) - (c*x*Sqrt[a + b*x^4])/(2*a*Sqrt[b]*(Sqrt[a] + Sqrt[b]*x^2)) + (f*
ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/(2*b^(3/2)) + (c*(Sqrt[a] + Sqrt[b]*x^2)
*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1
/4)], 1/2])/(2*a^(3/4)*b^(3/4)*Sqrt[a + b*x^4]) - ((Sqrt[b]*c - Sqrt[a]*e)*(Sqrt
[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTa
n[(b^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(3/4)*b^(5/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.561107, antiderivative size = 333, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 9, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3 \[ -\frac{\left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (\sqrt{b} c-\sqrt{a} e\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 a^{3/4} b^{5/4} \sqrt{a+b x^4}}+\frac{c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 a^{3/4} b^{3/4} \sqrt{a+b x^4}}+\frac{f \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{2 b^{3/2}}-\frac{x \left (a e+a f x-b c x^2-b d x^3\right )}{2 a b \sqrt{a+b x^4}}-\frac{c x \sqrt{a+b x^4}}{2 a \sqrt{b} \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{d \sqrt{a+b x^4}}{2 a b} \]

Antiderivative was successfully verified.

[In]  Int[(x^2*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^(3/2),x]

[Out]

-(x*(a*e + a*f*x - b*c*x^2 - b*d*x^3))/(2*a*b*Sqrt[a + b*x^4]) - (d*Sqrt[a + b*x
^4])/(2*a*b) - (c*x*Sqrt[a + b*x^4])/(2*a*Sqrt[b]*(Sqrt[a] + Sqrt[b]*x^2)) + (f*
ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/(2*b^(3/2)) + (c*(Sqrt[a] + Sqrt[b]*x^2)
*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1
/4)], 1/2])/(2*a^(3/4)*b^(3/4)*Sqrt[a + b*x^4]) - ((Sqrt[b]*c - Sqrt[a]*e)*(Sqrt
[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTa
n[(b^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(3/4)*b^(5/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 90.4119, size = 294, normalized size = 0.88 \[ \frac{f \operatorname{atanh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a + b x^{4}}} \right )}}{2 b^{\frac{3}{2}}} - \frac{d \sqrt{a + b x^{4}}}{2 a b} - \frac{x \left (a e + a f x - b c x^{2} - b d x^{3}\right )}{2 a b \sqrt{a + b x^{4}}} - \frac{c x \sqrt{a + b x^{4}}}{2 a \sqrt{b} \left (\sqrt{a} + \sqrt{b} x^{2}\right )} + \frac{c \sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) E\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{2 a^{\frac{3}{4}} b^{\frac{3}{4}} \sqrt{a + b x^{4}}} + \frac{\sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) \left (\sqrt{a} e - \sqrt{b} c\right ) F\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{4 a^{\frac{3}{4}} b^{\frac{5}{4}} \sqrt{a + b x^{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**2*(f*x**3+e*x**2+d*x+c)/(b*x**4+a)**(3/2),x)

[Out]

f*atanh(sqrt(b)*x**2/sqrt(a + b*x**4))/(2*b**(3/2)) - d*sqrt(a + b*x**4)/(2*a*b)
 - x*(a*e + a*f*x - b*c*x**2 - b*d*x**3)/(2*a*b*sqrt(a + b*x**4)) - c*x*sqrt(a +
 b*x**4)/(2*a*sqrt(b)*(sqrt(a) + sqrt(b)*x**2)) + c*sqrt((a + b*x**4)/(sqrt(a) +
 sqrt(b)*x**2)**2)*(sqrt(a) + sqrt(b)*x**2)*elliptic_e(2*atan(b**(1/4)*x/a**(1/4
)), 1/2)/(2*a**(3/4)*b**(3/4)*sqrt(a + b*x**4)) + sqrt((a + b*x**4)/(sqrt(a) + s
qrt(b)*x**2)**2)*(sqrt(a) + sqrt(b)*x**2)*(sqrt(a)*e - sqrt(b)*c)*elliptic_f(2*a
tan(b**(1/4)*x/a**(1/4)), 1/2)/(4*a**(3/4)*b**(5/4)*sqrt(a + b*x**4))

_______________________________________________________________________________________

Mathematica [C]  time = 0.910017, size = 242, normalized size = 0.73 \[ \frac{\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \left (\sqrt{b} \left (b c x^3-a (d+x (e+f x))\right )+a f \sqrt{a+b x^4} \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )\right )+\sqrt{a} \sqrt{b} \sqrt{\frac{b x^4}{a}+1} \left (\sqrt{b} c-i \sqrt{a} e\right ) F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )-\sqrt{a} b c \sqrt{\frac{b x^4}{a}+1} E\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )}{2 a b^{3/2} \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]  Integrate[(x^2*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^(3/2),x]

[Out]

(Sqrt[(I*Sqrt[b])/Sqrt[a]]*(Sqrt[b]*(b*c*x^3 - a*(d + x*(e + f*x))) + a*f*Sqrt[a
 + b*x^4]*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]]) - Sqrt[a]*b*c*Sqrt[1 + (b*x^4)
/a]*EllipticE[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1] + Sqrt[a]*Sqrt[b]*(Sqr
t[b]*c - I*Sqrt[a]*e)*Sqrt[1 + (b*x^4)/a]*EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[b])/S
qrt[a]]*x], -1])/(2*a*Sqrt[(I*Sqrt[b])/Sqrt[a]]*b^(3/2)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.012, size = 331, normalized size = 1. \[ -{\frac{d}{2\,b}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{c{x}^{3}}{2\,a}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{b}} \right ) b}}}}-{{\frac{i}{2}}c\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}{\frac{1}{\sqrt{b}}}}+{{\frac{i}{2}}c\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}{\frac{1}{\sqrt{b}}}}-{\frac{ex}{2\,b}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{b}} \right ) b}}}}+{\frac{e}{2\,b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{\frac{f{x}^{2}}{2\,b}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{f}{2}\ln \left ( \sqrt{b}{x}^{2}+\sqrt{b{x}^{4}+a} \right ){b}^{-{\frac{3}{2}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^2*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x)

[Out]

-1/2*d/b/(b*x^4+a)^(1/2)+1/2*c/a*x^3/((x^4+a/b)*b)^(1/2)-1/2*I*c/a^(1/2)/(I/a^(1
/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/
2)/(b*x^4+a)^(1/2)/b^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+1/2*I*c/a^(1
/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/
2)*x^2)^(1/2)/(b*x^4+a)^(1/2)/b^(1/2)*EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-1
/2*e/b*x/((x^4+a/b)*b)^(1/2)+1/2*e/b/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1
/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^
(1/2)*b^(1/2))^(1/2),I)-1/2*f*x^2/b/(b*x^4+a)^(1/2)+1/2*f/b^(3/2)*ln(b^(1/2)*x^2
+(b*x^4+a)^(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (f x^{3} + e x^{2} + d x + c\right )} x^{2}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x^3 + e*x^2 + d*x + c)*x^2/(b*x^4 + a)^(3/2),x, algorithm="maxima")

[Out]

integrate((f*x^3 + e*x^2 + d*x + c)*x^2/(b*x^4 + a)^(3/2), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{f x^{5} + e x^{4} + d x^{3} + c x^{2}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x^3 + e*x^2 + d*x + c)*x^2/(b*x^4 + a)^(3/2),x, algorithm="fricas")

[Out]

integral((f*x^5 + e*x^4 + d*x^3 + c*x^2)/(b*x^4 + a)^(3/2), x)

_______________________________________________________________________________________

Sympy [A]  time = 28.3428, size = 156, normalized size = 0.47 \[ d \left (\begin{cases} - \frac{1}{2 b \sqrt{a + b x^{4}}} & \text{for}\: b \neq 0 \\\frac{x^{4}}{4 a^{\frac{3}{2}}} & \text{otherwise} \end{cases}\right ) + f \left (\frac{\operatorname{asinh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a}} \right )}}{2 b^{\frac{3}{2}}} - \frac{x^{2}}{2 \sqrt{a} b \sqrt{1 + \frac{b x^{4}}{a}}}\right ) + \frac{c x^{3} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{3}{4}, \frac{3}{2} \\ \frac{7}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{2}} \Gamma \left (\frac{7}{4}\right )} + \frac{e x^{5} \Gamma \left (\frac{5}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{5}{4}, \frac{3}{2} \\ \frac{9}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{2}} \Gamma \left (\frac{9}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**2*(f*x**3+e*x**2+d*x+c)/(b*x**4+a)**(3/2),x)

[Out]

d*Piecewise((-1/(2*b*sqrt(a + b*x**4)), Ne(b, 0)), (x**4/(4*a**(3/2)), True)) +
f*(asinh(sqrt(b)*x**2/sqrt(a))/(2*b**(3/2)) - x**2/(2*sqrt(a)*b*sqrt(1 + b*x**4/
a))) + c*x**3*gamma(3/4)*hyper((3/4, 3/2), (7/4,), b*x**4*exp_polar(I*pi)/a)/(4*
a**(3/2)*gamma(7/4)) + e*x**5*gamma(5/4)*hyper((5/4, 3/2), (9/4,), b*x**4*exp_po
lar(I*pi)/a)/(4*a**(3/2)*gamma(9/4))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (f x^{3} + e x^{2} + d x + c\right )} x^{2}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x^3 + e*x^2 + d*x + c)*x^2/(b*x^4 + a)^(3/2),x, algorithm="giac")

[Out]

integrate((f*x^3 + e*x^2 + d*x + c)*x^2/(b*x^4 + a)^(3/2), x)